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Abstract: Let X be a Banach space, X* its dual,(·,·) the duality on X*×X, and T:X X→ * an operator 
(nonlinear and multi-valued, in general), and φ:X→R {+∪ ∞ } is a convex lower semi-continuous 
function with the effective domain D(φ)={v∈X | φ(v)<∞ . Given a closed convex subset K X and f⊂ ∈X*, 
the problem of finding u∈K such that (Tu-f, v-u)+φ(v)-φ(u) 0   for all v≥ ∈D(φ) is called a variational 
inequality.In this paper we applied a splitting algorithm for the stationary inclusion Tu+∂φ(u) ∋ 0, 
equivalent with a variational inequality, when T is a maximal monotone mapping on a Hilbert space H. 
Also we establish conditions to prove the weak convergence of the algorithm..  
 
Mathematics Subject Classifications 2010: 47J20, 47J25, 49J40. 
 
Keywords: Douglas-Rachford algorithm, splitting algorithm, variational inequality. 
 

 

1. INTRODUCTION 

 A fundamental algorithm for finding roots 
of a monotone operator is the proximal point 
algorithm (see [12]). This method requires 
evaluation of resolvent operators of the form 
(I+λS)-1, where S is monotone and set-valued, 
λ is a positive scalar, and I denotes the identity 
mapping. The main difficulty with the method 
is that I+λS may be hard to invert, depending 
on the nature of S. One alternative is to find 
maximal monotone operators W and V such 
that W+V=S, but I+λW and I+λV are easier to 
invert than I+λS. One can then devise an 
algorithm that uses only operators of the form 
(I+λW)-1 and (I+λV)-1, rather than 
(I+λ(W+V))-1. Such an approach is called a 
splitting method, and is inspired by well-
established techniques from numerical linear 
algebra (see, for example [10]). 

 A number of authors have extensively 
studied monotone operator, splitting methods, 
which fall into four principal classes: forward-
backward [13], double-backward [8], 
Peaceman-Rachford [9], and Douglas-
Rachford [9]. 
 We will focus on the  Peaceman-Rachford 
algorithm,for variational inequalities in the 
case of multi-valued monotone operators. We 
will prove the convergence of this algorithm. 
 

2. SPLITTING ALGORITHMS FOR 
STATIONARY PROBLEMS 

 
 Let H be a real Hilbert space with inner 
product (·,·) and norm ||·||. Let S:H→2H be a 
monotone operator. We study the nonlinear 
multi-valued stationary equation Su 0. ∋
 We consider the case when S=W+V and 
W,V are maximal monotone. For that we get 
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V,W single-valued operators. In conclusion we 
have to solve the inclusion 
 Wu+Vu 0                                              (1)                                                                                                    ∋
equivalent with 
 u+λWu (u-λVu),  ∋
where λ>0 is a constant. Since W is a maximal 
monotone operator, we deduce that 
 u=(I+λW)-1(I-λV)u.                                (2) 
 Analogously, (1) can be written as 
 u+λVu ∋ (u-λWu), 
where λ>0 is a constant, and finally we obtain 
 u=(I+λV)-1(I-λW)u.                               (3) 
Combining (2) and (3) we have 
 u=(I+λV)-1(I-λW)(I+λW)-1(I-λV)u.       (4) 
Relation (4) suggests the following algorithm  
un+1=(I+λV)-1(I-λW) (I+λW)-1(I-λV)un             (5) 
which was introduced, in the case of linear 
operators, by Peaceman-Rachford (see [11]). 
 When V is single-valued, we have the 
identity 
 (I+λV)(I+λV)-1=I.                                    (6) 
From (2) and (6), we obtain 
 u=(I+λV)-1[(I+λW)-1(I-λV)+λV]u.          (7) 
Relation (7) suggests the iterative scheme 
un+1=(I + λ V)-1[(I +λW)-1 (I -λV) +λV]un   (8)     
which was introduced by Douglas-Rachford 
[6]. 
 These algorithms are both unconditionally 
stable (un remains bounded independently of n 
for any λ). This set of properties is remarkable 
if we compare them to what we get with more 
standard algorithms. 
 The first one is 
 un+1=(I+λW)-1(I-λV)un,                           (9) 
which is not unconditionally stable, but 
converges to the solution of the stationary 
problem for λ sufficiently small if V is 
Lipschitz continuous (see [7], [4]). 
 The second one is 
 un+1=(I+λW)-1(I+λV)-1un, 
which is unconditionally stable but does not 
converge to the solution of the stationary 
problem for any λ, except with some special 
modification (see Lions [8]). 
 All these are called splitting algorithms 
since, up to the introduction of a fractionary 
step, they can be interpreted as the 
combination of a step for W and a step for V. 
As an example, (9) can be written 

 
λ
1 (un+1/2

 -un)+Vun=0, 

 
λ
1 (un+1-un+1/2)+Wun+1=0, 

which shows that (9) results from the 
combination of a forward step on V and 
backward step on W. In this section, we show 
that these algorithms can be used to solve 
variational inequalities 
 We shall assume that T:H→2H is a 
maximal monotone operator. We denote by 
D(T) the domain of T and by                                         
  J λT =(I+λT)-1  
 the resolvent of T. Let φ:H RU {→ ∞+ }be a 
proper convex lower semi-continuous (l.s.c) 
function and let f be defined on H. We 
consider the following variational inequality: 
 Find u∈D(φ) such that there exists w∈Tu 
satisfying 
 (w-f,v-u)+φ(v)-φ(u)≥0  v∈D(φ).     (10) ∀
It is easy to notice that the above problem is 
equivalent with the problem: 
 Find u∈H such that 
 Tu +∂φ(u) ∋ f                                          (11) 
where ∂φ is the subdifferential of φ. 
  We shall assume that the problem (10) has 
at least one solution. Hence there exists u∈H, 
t∈Tu, s∈∂φ(u) such that t+s=f. We do not 
affect the generalization of  the problem if we 
assume in the sequel that f 0. ≡
 Since T and ∂φ are maximal monotone 
operators, we can apply the Peaceman-
Rachford algorithm to solve the problem: 
 Find u∈ H such that 
 Tu+∂φ(u) ∋ 0.                                       (12) 
In the case considered here, where T and ∂φ 
are multi-valued, we need to make precise the 
definition of the algorithms (5) and (8). For 
both, u0∈ D(T) is given, and we choose 
t0∈ Tu0

 and set  v0=u0+λt0 in such a way that 
u0=J (vλ

T
0). We then define by induction the 

sequence {vn} in the following way: 
Algorithm  
 vn+1=(2J -I)(2J -I)vλ

ϕ∂
λ
T

n                        (13) 
Convergence of the Algorithm . We obtain 
the algorithm above after a simple 
computation. Since t+s=0  and v=u+λt in such 
way that u=J (v), we have  λ

T
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 s=-t ,  u+λs=u-λt=2u-u-λt=2J (v)-v. λ
T

From this relation, we obtain 
 u=J (2J -I)v, λ

ϕ∂
λ
T

 2u=2J (2J -I)v, λ
ϕ∂

λ
T

 v+2J (v)-v=2J (2J -I)v, λ
T

λ
ϕ∂

λ
T

 v=(2J -I)(2J -I)v, λ
ϕ∂

λ
T

relation which suggests our algorithm, and the 
following notations 
 v=u+λt, w=u+λs, 

 wn=2un-vn, tn=
λ
1 (vn -un), sn=

2λ
1 (wn-vn+1). 

 We prove the following result. 
Proposition 2.1. Under the assumption: there 
exists u∈H, t∈Tu, s∈∂φ(u) such  that  t+s=0, 
the sequences {un}, {vn}, {wn}, {sn}, {tn}, 
remain bounded. Moreover 
 

∞→n
lim (tn-t, un-u)=0                                 (14) 

 
∞→n

lim (sn-s, 
2

wv n1n ++
-u)=0.              (15) 

Proof. From the definition of tn, we have 
vn=un+λtn. As un=J vλ

T
n, we have vn∈un+λTun, 

hence tn∈Tun. From the monotonicity of T, we 
get: 

 0≤ (tn-t,un-u)=
4λ
1 (||vn-v||2 -||wn-w||2),  (16) 

using the relations 

 un=
2
1 (vn +wn), u=

2
1 (v +w),  

 tn=
2λ
1 (vn -wn), t=

2λ
1 (v-w). 

On the other hand, from (13), we have 

 vn+1=(2J -I)wλ
ϕ∂

n⇒
2
1 (vn+1+wn )=J (wλ

ϕ∂
n). 

Hence 

 wn∈
2

wv n1n ++
+λ∂φ(

2
wv n1n ++

), 

 sn= ∈
− +

2λ
vw 1nn

∂φ(
2

wv n1n ++
). 

From the monotonicity of ∂φ we deduce 

  0≤ (sn-s, 
2

wv n1n ++
-u)= 

(
2λ

vw 1nn +− -
2λ

vw − ,
2

vw 1nn ++ -
2

vw + )=                     

 
4λ
1 (||wn-w||2-||vn+1-v||2).                      (17)                     

From (16) and (17) we obtain the inequalities 
 ||vn+1-v||2≤ ||wn-w||2≤ ||vn-v||2, 
which show that the sequences {vn},{wn}are 
bounded. Implicitly, {un}is bounded. Finally, 
as  
 ||vn - v||2-||vn+1 -v||2→0 as n , →∞
(16), (17) imply (14) and (15).  ■ 
Definition 2.2. We say that A:H→H satisfies 
condition (C) if for all xn, x∈D(A) such that 
Axn is bounded, xn x (weak convergence), 
and 
 (Axn -Ax, xn -x)→0 as n + , imply 
x=

→ ∞
x . 

Theorem 2.3. If  T is single-valued and 
satisfies condition (C), then the sequence {un}  
obtained from Algorithm  converges weakly to 
u, the solution of (12), which is unique. 
Proof. We first prove uniqueness. Let u1, u2, 
be two solutions of (12). We have, using the 
monotonicity of ∂φ, 
 0≤ (Tu1-Tu2, u1-u2)= 
 -(∂φ(u1 )-∂φ(u2), u1-u2) 0, ≤
hence (Tu1-Tu2, u1-u2)=0 which, together with 
condition (C) implies u1=u2. 
 Let {u } be a subsequence of the 
bounded sequence {u

in
n} such that u in ū. 

From (14) and condition (C), one gets u=ū, 
and from the uniqueness, the whole sequence 
{un} converges weakly to u.  ■ 
Remark 2.4. We can prove that, if a 
subsequence {v } of {vin n} is bounded, then 
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the problem (12) has one solution u. Indeed, 
let A=(2J -I)( 2J -I), we have vλ

ϕ∂
λ
T

n+1=Avn.As 

2J -I and 2J -I are nonexpansive, A itself is 

nonexpansive. Because the subsequence {v } 
is bounded, we obtain that A has a fixed point 
v, with Av=v. Let u=J v we have  u

λ
ϕ∂

λ
T

in

λ
T ∈D(T)  

and  v=(2J -I)(2u-v), u=J (2u-v). λ
ϕ∂

λ
ϕ∂

Hence u∈D(∂φ). Let t∈Tu satisfy v=u+λt. We 
have  u=J λ (u-λt) ⇒ (u-λt)∈u+λ∂φ(u)  that is ϕ∂

 -t∈∂φ(u), hence u is a solution of the problem 
(12). 
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