"HENRY COANDA" AIR FORCE ACADEMY

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER

AFASES 2011
Brasov, 26-28 May 2011

A SPLITTING ALGORITHM FOR VARIATIONAL INEQUALITIES

Corina L. CHIRIAC
Bioterra University, Bucharest, Romania

Abstract

Let X be a Banach space, X^{*} its dual, $(, \cdot)$ the duality on $X^{*} \times X$, and $T: X \rightarrow X^{*}$ an operator (nonlinear and multi-valued, in general), and $\varphi: X \rightarrow \boldsymbol{R} \cup\{+\infty\}$ is a convex lower semi-continuous function with the effective domain $D(\varphi)=\left\{v \in X \mid \varphi(v)<\infty\right.$. Given a closed convex subset $K \subset X$ and $f \in X^{*}$, the problem of finding $u \in K$ such that $(T u-f, v-u)+\varphi(v)-\varphi(u) \geq 0$ for all $v \in D(\varphi)$ is called a variational inequality.In this paper we applied a splitting algorithm for the stationary inclusion $T u+\partial \varphi(u) \ni 0$, equivalent with a variational inequality, when T is a maximal monotone mapping on a Hilbert space H. Also we establish conditions to prove the weak convergence of the algorithm..

Mathematics Subject Classifications 2010: 47J20, 47J25, 49 J40
Keywords: Douglas-Rachford algorithm, splitting algorithm, variational inequality.

1. INTRODUCTION

A fundamental algorithm for finding roots of a monotone operator is the proximal point algorithm (see [12]). This method requires evaluation of resolvent operators of the form $(\mathrm{I}+\lambda \mathrm{S})^{-1}$, where S is monotone and set-valued, λ is a positive scalar, and I denotes the identity mapping. The main difficulty with the method is that $\mathrm{I}+\lambda \mathrm{S}$ may be hard to invert, depending on the nature of S . One alternative is to find maximal monotone operators W and V such that $\mathrm{W}+\mathrm{V}=\mathrm{S}$, but $\mathrm{I}+\lambda \mathrm{W}$ and $\mathrm{I}+\lambda \mathrm{V}$ are easier to invert than $\mathrm{I}+\lambda \mathrm{S}$. One can then devise an algorithm that uses only operators of the form $(\mathrm{I}+\lambda \mathrm{W})^{-1}$ and $(\mathrm{I}+\lambda \mathrm{V})^{-1}$, rather than $(\mathrm{I}+\lambda(\mathrm{W}+\mathrm{V}))^{-1}$. Such an approach is called a splitting method, and is inspired by wellestablished techniques from numerical linear algebra (see, for example [10]).

A number of authors have extensively studied monotone operator, splitting methods, which fall into four principal classes: forwardbackward [13], double-backward [8], Peaceman-Rachford [9], and DouglasRachford [9].

We will focus on the Peaceman-Rachford algorithm,for variational inequalities in the case of multi-valued monotone operators. We will prove the convergence of this algorithm.

2. SPLITTING ALGORITHMS FOR STATIONARY PROBLEMS

Let H be a real Hilbert space with inner product $(\cdot ;)$ and norm $\|\cdot\|$. Let $\mathrm{S}: \mathrm{H} \rightarrow 2^{\mathrm{H}}$ be a monotone operator. We study the nonlinear multi-valued stationary equation $\mathrm{Su} \ni 0$.

We consider the case when $\mathrm{S}=\mathrm{W}+\mathrm{V}$ and W, V are maximal monotone. For that we get
V, W single-valued operators. In conclusion we have to solve the inclusion

Wu+Vиэ 0
equivalent with
$u+\lambda W u э(u-\lambda V u)$,
where $\lambda>0$ is a constant. Since W is a maximal monotone operator, we deduce that

$$
\begin{equation*}
\mathrm{u}=(\mathrm{I}+\lambda \mathrm{W})^{-1}(\mathrm{I}-\lambda \mathrm{V}) \mathrm{u} . \tag{2}
\end{equation*}
$$

Analogously, (1) can be written as $u+\lambda V u э(u-\lambda W u)$,
where $\lambda>0$ is a constant, and finally we obtain

$$
\begin{equation*}
u=(I+\lambda V)^{-1}(I-\lambda W) u . \tag{3}
\end{equation*}
$$

Combining (2) and (3) we have

$$
\begin{equation*}
u=(I+\lambda V)^{-1}(I-\lambda W)(I+\lambda W)^{-1}(I-\lambda V) u \tag{4}
\end{equation*}
$$

Relation (4) suggests the following algorithm
$u^{n+1}=(I+\lambda V)^{-1}(I-\lambda W)(I+\lambda W)^{-1}(I-\lambda V) u^{n}$
which was introduced, in the case of linear operators, by Peaceman-Rachford (see [11]).

When V is single-valued, we have the identity

$$
\begin{equation*}
(\mathrm{I}+\lambda \mathrm{V})(\mathrm{I}+\lambda \mathrm{V})^{-1}=\mathrm{I} \tag{6}
\end{equation*}
$$

From (2) and (6), we obtain

$$
\begin{equation*}
u=(I+\lambda V)^{-1}\left[(I+\lambda W)^{-1}(I-\lambda V)+\lambda V\right] u \tag{7}
\end{equation*}
$$

Relation (7) suggests the iterative scheme
$\mathrm{u}^{\mathrm{n}+1}=(\mathrm{I}+\lambda \mathrm{V})^{-1}\left[(\mathrm{I}+\lambda \mathrm{W})^{-1}(\mathrm{I}-\lambda \mathrm{V})+\lambda \mathrm{V}\right] \mathrm{u}^{\mathrm{n}}$
which was introduced by Douglas-Rachford [6].

These algorithms are both unconditionally stable (u^{n} remains bounded independently of n for any λ). This set of properties is remarkable if we compare them to what we get with more standard algorithms.

The first one is

$$
\begin{equation*}
\mathrm{u}^{\mathrm{n}+1}=(\mathrm{I}+\lambda \mathrm{W})^{-1}(\mathrm{I}-\lambda \mathrm{V}) \mathrm{u}^{\mathrm{n}}, \tag{9}
\end{equation*}
$$

which is not unconditionally stable, but converges to the solution of the stationary problem for λ sufficiently small if V is Lipschitz continuous (see [7], [4]).

The second one is

$$
\mathrm{u}^{\mathrm{n}+1}=(\mathrm{I}+\lambda \mathrm{W})^{-1}(\mathrm{I}+\lambda \mathrm{V})^{-1} \mathrm{u}^{\mathrm{n}},
$$

which is unconditionally stable but does not converge to the solution of the stationary problem for any λ, except with some special modification (see Lions [8]).

All these are called splitting algorithms since, up to the introduction of a fractionary step, they can be interpreted as the combination of a step for W and a step for V . As an example, (9) can be written

$$
\begin{aligned}
& \frac{1}{\lambda}\left(u^{n+1 / 2}-u^{n}\right)+V u^{n}=0, \\
& \frac{1}{\lambda}\left(u^{n+1}-u^{n+1 / 2}\right)+W u^{n+1}=0
\end{aligned}
$$

which shows that (9) results from the combination of a forward step on V and backward step on W. In this section, we show that these algorithms can be used to solve variational inequalities

We shall assume that $\mathrm{T}: \mathrm{H} \rightarrow 2^{\mathrm{H}}$ is a maximal monotone operator. We denote by $\mathrm{D}(\mathrm{T})$ the domain of T and by

$$
\mathrm{J}_{\mathrm{T}}^{\lambda}=(\mathrm{I}+\lambda \mathrm{T})^{-1}
$$

the resolvent of T. Let $\varphi: H \rightarrow \mathbf{R} \cup\{+\infty\}$ be a proper convex lower semi-continuous (1.s.c) function and let f be defined on H . We consider the following variational inequality:

Find $u \in D(\varphi)$ such that there exists $w \in T u$ satisfying
$(\mathrm{w}-\mathrm{f}, \mathrm{v}-\mathrm{u})+\varphi(\mathrm{v})-\varphi(\mathrm{u}) \geq 0 \quad \forall \mathrm{v} \in \mathrm{D}(\varphi)$.
It is easy to notice that the above problem is equivalent with the problem:

Find $u \in H$ such that
$T u+\partial \varphi(u)$ э f
where $\partial \varphi$ is the subdifferential of φ.
We shall assume that the problem (10) has at least one solution. Hence there exists $u \in H$, $t \in T u, s \in \partial \varphi(u)$ such that $t+s=f$. We do not affect the generalization of the problem if we assume in the sequel that $\mathrm{f} \equiv 0$.

Since T and $\partial \varphi$ are maximal monotone operators, we can apply the PeacemanRachford algorithm to solve the problem:

Find $u \in H$ such that

$$
\begin{equation*}
\mathrm{Tu}+\partial \varphi(\mathrm{u}) \ni 0 . \tag{12}
\end{equation*}
$$

In the case considered here, where T and $\partial \varphi$ are multi-valued, we need to make precise the definition of the algorithms (5) and (8). For both, $u^{0} \in \mathrm{D}(\mathrm{T})$ is given, and we choose $\mathrm{t}^{0} \in \mathrm{Tu}^{0}$ and set $\mathrm{v}^{0}=\mathrm{u}^{0}+\lambda \mathrm{t}^{0}$ in such a way that $u^{0}=J_{T}^{\lambda}\left(v^{0}\right)$. We then define by induction the sequence $\left\{\mathrm{v}^{\mathrm{n}}\right\}$ in the following way:

Algorithm

$$
\begin{equation*}
\mathrm{v}^{\mathrm{n}+1}=\left(2 \mathrm{~J}_{\partial \varphi}^{\lambda}-\mathrm{I}\right)\left(2 \mathrm{~J}_{\mathrm{T}}^{\lambda}-\mathrm{I}\right) \mathrm{v}^{\mathrm{n}} \tag{13}
\end{equation*}
$$

Convergence of the Algorithm . We obtain the algorithm above after a simple computation. Since $\mathrm{t}+\mathrm{s}=0$ and $\mathrm{v}=\mathrm{u}+\lambda \mathrm{t}$ in such way that $u=J_{T}^{\lambda}(v)$, we have
"HENRY COANDA" AIR FORCE ACADEMY ROMANIA
" GENERAL M.R. STEFANIK"

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER

AFASES 2011
Brasov, 26-28 May 2011

$$
\mathrm{s}=-\mathrm{t}, \mathrm{u}+\lambda \mathrm{s}=\mathrm{u}-\lambda \mathrm{t}=2 \mathrm{u}-\mathrm{u}-\lambda \mathrm{t}=2 \mathrm{~J}_{\mathrm{T}}^{\lambda}(\mathrm{v})-\mathrm{v} .
$$

From this relation, we obtain

$$
\begin{aligned}
& u=J_{\partial \varphi}^{\lambda}\left(2 J_{T}^{\lambda}-I\right) v, \\
& 2 u^{\prime}=2 J_{\partial \varphi}^{\lambda}\left(2 J_{T}^{\lambda}-I\right) v, \\
& v+2 J_{T}^{\lambda}(v)-v=2 J_{\partial \varphi}^{\lambda}\left(2 J_{T}^{\lambda}-I\right) v, \\
& v=\left(2 J_{\partial \varphi}^{\lambda}-I\right)\left(2 J_{T}^{\lambda}-I\right) v,
\end{aligned}
$$

relation which suggests our algorithm, and the following notations

$$
\mathrm{v}=\mathrm{u}+\lambda \mathrm{t}, \mathrm{w}=\mathrm{u}+\lambda \mathrm{s},
$$

$$
\mathrm{w}^{\mathrm{n}}=2 \mathrm{u}^{\mathrm{n}}-\mathrm{v}^{\mathrm{n}}, \mathrm{t}^{\mathrm{n}}=\frac{1}{\lambda}\left(\mathrm{v}^{\mathrm{n}}-\mathrm{u}^{\mathrm{n}}\right), \mathrm{s}^{\mathrm{n}}=\frac{1}{2 \lambda}\left(\mathrm{w}^{\mathrm{n}}-\mathrm{v}^{\mathrm{n}+1}\right)
$$

We prove the following result.
Proposition 2.1. Under the assumption: there exists $\mathrm{u} \in \mathrm{H}, \mathrm{t} \in \mathrm{Tu}, \mathrm{s} \in \partial \varphi(\mathrm{u})$ such that $\mathrm{t}+\mathrm{s}=0$, the sequences $\left\{u^{n}\right\},\left\{\mathrm{v}^{\mathrm{n}}\right\},\left\{\mathrm{w}^{\mathrm{n}}\right\},\left\{\mathrm{s}^{\mathrm{n}}\right\},\left\{\mathrm{t}^{\mathrm{n}}\right\}$, remain bounded. Moreover

$$
\begin{align*}
& \lim _{n \rightarrow \infty}\left(t^{n}-t, u^{n}-u\right)=0 \tag{14}\\
& \lim _{n \rightarrow \infty}\left(s^{n}-s, \frac{v^{n+1}+W^{n}}{2}-u\right)=0 . \tag{15}
\end{align*}
$$

Proof. From the definition of t^{n}, we have $v^{n}=u^{n}+\lambda t^{n} . A s u^{n}=J_{T}^{\lambda} v^{n}$, we have $v^{n} \in u^{n}+\lambda T u^{n}$, hence $t^{n} \in T u^{n}$. From the monotonicity of T, we get:

$$
\begin{equation*}
0 \leq\left(\mathrm{t}^{\mathrm{n}}-\mathrm{t}, \mathrm{u}^{\mathrm{n}}-\mathrm{u}\right)=\frac{1}{4 \lambda}\left(\left\|\mathrm{v}^{\mathrm{n}}-\mathrm{v}\right\|^{2}-\left\|\mathrm{w}^{\mathrm{n}}-\mathrm{w}\right\|^{2}\right) \tag{16}
\end{equation*}
$$

using the relations

$$
\begin{aligned}
& \mathrm{u}^{\mathrm{n}}=\frac{1}{2}\left(\mathrm{v}^{\mathrm{n}}+\mathrm{w}^{\mathrm{n}}\right), \mathrm{u}=\frac{1}{2}(\mathrm{v}+\mathrm{w}) \\
& \mathrm{t}^{\mathrm{n}}=\frac{1}{2 \lambda}\left(\mathrm{v}^{\mathrm{n}}-\mathrm{w}^{\mathrm{n}}\right), \mathrm{t}=\frac{1}{2 \lambda}(\mathrm{v}-\mathrm{w})
\end{aligned}
$$

On the other hand, from (13), we have

$$
\mathrm{v}^{\mathrm{n}+1}=\left(2 \mathrm{~J}_{\partial \varphi}^{\lambda}-\mathrm{I}\right) \mathrm{w}^{\mathrm{n}} \Rightarrow \frac{1}{2}\left(\mathrm{v}^{\mathrm{n}+1}+\mathrm{w}^{\mathrm{n}}\right)=\mathrm{J}_{\partial \varphi}^{\lambda}\left(\mathrm{w}^{\mathrm{n}}\right)
$$

Hence

$$
\mathrm{w}^{\mathrm{n}} \in \frac{\mathrm{v}^{\mathrm{n}+1}+\mathrm{w}^{\mathrm{n}}}{2}+\lambda \partial \varphi\left(\frac{\mathrm{v}^{\mathrm{n}+1}+\mathrm{w}^{\mathrm{n}}}{2}\right)
$$

$$
\mathrm{s}^{\mathrm{n}}=\frac{\mathrm{w}^{\mathrm{n}}-\mathrm{v}^{\mathrm{n}+1}}{2 \lambda} \in \partial \varphi\left(\frac{\mathrm{v}^{\mathrm{n}+1}+\mathrm{w}^{\mathrm{n}}}{2}\right)
$$

From the monotonicity of $\partial \varphi$ we deduce

$$
\begin{gather*}
0 \leq\left(s^{n}-s, \frac{v^{n+1}+w^{n}}{2}-u\right)= \\
\left(\frac{w^{n}-v^{n+1}}{2 \lambda}-\frac{w-v}{2 \lambda}, \frac{w^{n}+v^{n+1}}{2}-\frac{w+v}{2}\right)= \\
\frac{1}{4 \lambda}\left(\left\|w^{n}-w\right\|^{2}-\left\|v^{n+1}-v\right\|^{2}\right) \tag{17}
\end{gather*}
$$

From (16) and (17) we obtain the inequalities $\left\|v^{n+1}-v\right\|^{2} \leq\left\|w^{n}-w\right\|^{2} \leq\left\|v^{n}-v\right\|^{2}$,
which show that the sequences $\left\{\mathrm{v}^{\mathrm{n}}\right\},\left\{\mathrm{w}^{\mathrm{n}}\right\}$ are bounded. Implicitly, $\left\{u^{n}\right\}$ is bounded. Finally, as

$$
\left\|\mathrm{v}^{\mathrm{n}}-\mathrm{v}\right\|^{2}-\left\|\mathrm{v}^{\mathrm{n}+1}-\mathrm{v}\right\|^{2} \rightarrow 0 \text { as } \mathrm{n} \rightarrow \infty
$$

(16), (17) imply (14) and (15).

Definition 2.2. We say that $\mathrm{A}: \mathrm{H} \rightarrow \mathrm{H}$ satisfies condition (C) if for all $\mathrm{x}^{\mathrm{n}}, \mathrm{x} \in \mathrm{D}(\mathrm{A})$ such that $A x^{n}$ is bounded, $x^{n} \rightarrow \bar{x}$ (weak convergence), and
$\left(\mathrm{Ax}^{\mathrm{n}}-\mathrm{Ax}, \mathrm{x}^{\mathrm{n}}-\mathrm{x}\right) \rightarrow 0$ as $\mathrm{n} \rightarrow+\infty$, imply $\mathrm{x}=\overline{\mathrm{X}}$.
Theorem 2.3. If T is single-valued and satisfies condition (C), then the sequence $\left\{\mathrm{u}^{\mathrm{n}}\right\}$ obtained from Algorithm converges weakly to u , the solution of (12), which is unique.
Proof. We first prove uniqueness. Let $\mathrm{u}_{1}, \mathrm{u}_{2}$, be two solutions of (12). We have, using the monotonicity of $\partial \varphi$,

$$
\begin{aligned}
& 0 \leq\left(T u_{1}-T u_{2}, u_{1}-u_{2}\right)= \\
& -\left(\partial \varphi\left(u_{1}\right)-\partial \varphi\left(u_{2}\right), u_{1}-u_{2}\right) \leq 0
\end{aligned}
$$

hence $\left(T u_{1}-T u_{2}, u_{1}-u_{2}\right)=0$ which, together with condition (C) implies $u_{1}=u_{2}$.

Let $\left\{u^{i}\right\}$ be a subsequence of the bounded sequence $\left\{u^{n}\right\}$ such that $u^{n_{i}} \rightarrow \bar{u}$. From (14) and condition (C), one gets $u=\bar{u}$, and from the uniqueness, the whole sequence $\left\{u^{n}\right\}$ converges weakly to u.
Remark 2.4. We can prove that, if a subsequence $\left\{\mathrm{v}^{\mathrm{n}_{\mathrm{i}}}\right\}$ of $\left\{\mathrm{v}^{\mathrm{n}}\right\}$ is bounded, then
the problem (12) has one solution u. Indeed, let $\mathrm{A}=\left(2 \mathrm{~J}_{\partial \varphi}^{\lambda}-\mathrm{I}\right)\left(2 \mathrm{~J}_{\mathrm{T}}^{\lambda}-\mathrm{I}\right)$, we have $\mathrm{v}^{\mathrm{n}+1}=\mathrm{Av}^{\mathrm{n}} . \mathrm{As}$ $2 \mathrm{~J}_{\partial \varphi}^{\lambda}-\mathrm{I}$ and $2 \mathrm{~J}_{\mathrm{T}}^{\lambda}-\mathrm{I}$ are nonexpansive, A itself is nonexpansive. Because the subsequence $\left\{\mathrm{v}^{\mathrm{n}_{\mathrm{i}}}\right\}$ is bounded, we obtain that A has a fixed point v, with $A v=v$. Let $u=J_{T}^{\lambda} v$ we have $u \in D(T)$ and $v=\left(2 J_{\partial \varphi}^{\lambda}-I\right)(2 u-v), u=J_{\partial \varphi}^{\lambda}(2 u-v)$.
Hence $u \in D(\partial \varphi)$. Let $t \in T u$ satisfy $v=u+\lambda t$. We have $u=J_{\partial \varphi}^{\lambda}(u-\lambda t) \Rightarrow(u-\lambda t) \in u+\lambda \partial \varphi(u)$ that is $-t \in \partial \varphi(u)$, hence u is a solution of the problem (12).

3. REFERENCES

1. J.B.Baillon, Quelques propriétés de convergence asymptotique pour les contractions impaires, C.R.Acad. Sci. Paris, Série A 283(1976), p. 587-590.
2. H.Brézis,OpérateursMaximaux Monotones et Semigroupes de Contraction dans les Espaces de Hilbert, Lectures Notes no. 5, North-Holland, Amsterdam, 1973.
3. F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, J. Math. Anal. Appl. 20 (1967), p. 197-228.
4. R.E. Bruck, An iterative solution of a variational inequality for certain monotone operators in Hilbert spaces, Bull. Amer. Math. Soc. 81 (1975), p. 890-892.
5. C. Chiriac, O metoda iterativa pentru inegalitati variationale, Analele Facultatii
de Inginerie din Hunedoara, Tomul 3, fasc. 5 (2001), p. 1-4.
6. J. Douglas and H.H. Rachford, On the numerical solution of the heat conduction problem in 2 and 3 space variables, Trans. Amer. Math. Soc. 82 (1956), p. 421-439.
7. A.A. Goldstein, Convex programming in Hilbert spaces, Bull. Amer. Math. Soc. 70 (1964), p. 709-710.
8. P.-L. Lions, Une méthode itérative de résolution d'une inéquation variationelle, Israel Journal of Mathematics 31 (1978), p. 204-208.
9. P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, SIAM J. Numer. Anal. 16 (1979), p. 964-979.
10. G.I. Marchuk, Methods of Numerical Mathematics, Springer-Verlag, New York, 1975.
11. D.H. Peaceman and H.H. Rachford, The numerical solution of parabolic elliptic differential equations, J. Soc. Indust. Appl. Math. 3 (1995), p. 28-41.
12. R.T. Rockafellar, Monotone operators and the proximal point algorithm, SIAM J. Control Optim. 14 (1976), p. 877-898.
13.P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, SIAM J. Control and Optimization 29, 1(1991), p. 119-138.
