

"HENRY COANDA" AIR FORCE ACADEMY ROMANIA

GERMANY

" GENERAL M.R. STEFANIK" ARMED FORCES ACADEMY SLOVAK REPUBLIC

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2011 Brasov, 26-28 May 2011

A SPLITTING ALGORITHM FOR VARIATIONAL INEQUALITIES

Corina L. CHIRIAC

Bioterra University, Bucharest, Romania

Abstract: Let X be a Banach space, X^* its dual, (\cdot, \cdot) the duality on $X^* \times X$, and $T:X \to X^*$ an operator (nonlinear and multi-valued, in general), and $\varphi:X \to \mathbb{R} \cup \{+\infty\}$ is a convex lower semi-continuous function with the effective domain $D(\varphi) = \{v \in X \mid \varphi(v) < \infty$. Given a closed convex subset $K \subset X$ and $f \in X^*$, the problem of finding $u \in K$ such that $(Tu-f, v-u) + \varphi(v) - \varphi(u) \ge 0$ for all $v \in D(\varphi)$ is called a variational inequality. In this paper we applied a splitting algorithm for the stationary inclusion $Tu + \partial \varphi(u) \ge 0$, equivalent with a variational inequality, when T is a maximal monotone mapping on a Hilbert space H. Also we establish conditions to prove the weak convergence of the algorithm.

Mathematics Subject Classifications 2010: 47J20, 47J25, 49J40.

Keywords: Douglas-Rachford algorithm, splitting algorithm, variational inequality.

1. INTRODUCTION

A fundamental algorithm for finding roots of a monotone operator is the proximal point algorithm (see [12]). This method requires evaluation of resolvent operators of the form $(I+\lambda S)^{-1}$, where S is monotone and set-valued, λ is a positive scalar, and I denotes the identity mapping. The main difficulty with the method is that I+ λ S may be hard to invert, depending on the nature of S. One alternative is to find maximal monotone operators W and V such that W+V=S, but I+ λ W and I+ λ V are easier to invert than $I+\lambda S$. One can then devise an algorithm that uses only operators of the form $(I+\lambda V)^{-1}$, $(I+\lambda W)^{-1}$ and rather than $(I+\lambda(W+V))^{-1}$. Such an approach is called a splitting method, and is inspired by wellestablished techniques from numerical linear algebra (see, for example [10]).

A number of authors have extensively studied monotone operator, splitting methods, which fall into four principal classes: forwardbackward [13], double-backward [8], Peaceman-Rachford [9], and Douglas-Rachford [9].

We will focus on the Peaceman-Rachford algorithm, for variational inequalities in the case of multi-valued monotone operators. We will prove the convergence of this algorithm.

2. SPLITTING ALGORITHMS FOR STATIONARY PROBLEMS

Let H be a real Hilbert space with inner product (\cdot, \cdot) and norm $||\cdot||$. Let S:H $\rightarrow 2^{H}$ be a monotone operator. We study the nonlinear multi-valued stationary equation Su $\ni 0$.

We consider the case when S=W+V and W,V are maximal monotone. For that we get

V,W single-valued operators. In conclusion we have to solve the inclusion

 $Wu+Vu \ni 0 \tag{1}$

equivalent with

 $u+\lambda Wu \ni (u-\lambda Vu),$

where $\lambda > 0$ is a constant. Since W is a maximal monotone operator, we deduce that

$$u = (I + \lambda W)^{-1} (I - \lambda V) u.$$
 (2)

Analogously, (1) can be written as

 $u + \lambda V u \ni (u - \lambda W u),$

where $\lambda > 0$ is a constant, and finally we obtain u=(I+ λ V)⁻¹(I- λ W)u. (3)

Combining (2) and (3) we have

 $u=(I+\lambda V)^{-1}(I-\lambda W)(I+\lambda W)^{-1}(I-\lambda V)u.$ (4) Relation (4) suggests the following algorithm $u^{n+1}=(I+\lambda V)^{-1}(I-\lambda W)(I+\lambda W)^{-1}(I-\lambda V)u^{n}$ (5) which was introduced, in the case of linear operators, by Peaceman-Rachford (see [11]).

When V is single-valued, we have the identity

$$(I+\lambda V)(I+\lambda V)^{-1}=I.$$
 (6)

From (2) and (6), we obtain

 $u=(I+\lambda V)^{-1}[(I+\lambda W)^{-1}(I-\lambda V)+\lambda V]u.$ (7) Relation (7) suggests the iterative scheme

 $u^{n+1} = (I + \lambda V)^{-1} [(I + \lambda W)^{-1} (I - \lambda V) + \lambda V] u^{n}$ (8) which was introduced by Douglas-Rachford [6].

These algorithms are both unconditionally stable (u^n remains bounded independently of n for any λ). This set of properties is remarkable if we compare them to what we get with more standard algorithms.

The first one is

 $u^{n+1} = (I+\lambda W)^{-1}(I-\lambda V)u^n$, (9) which is not unconditionally stable, but converges to the solution of the stationary problem for λ sufficiently small if V is

Lipschitz continuous (see [7], [4]).

The second one is n+1 (1.11)

 $u^{n+1} = (I + \lambda W)^{-1} (I + \lambda V)^{-1} u^n$,

which is unconditionally stable but does not converge to the solution of the stationary problem for any λ , except with some special modification (see Lions [8]).

All these are called *splitting algorithms* since, up to the introduction of a fractionary step, they can be interpreted as the combination of a step for W and a step for V. As an example, (9) can be written

$$\frac{1}{\lambda} (u^{n+1/2} - u^n) + Vu^n = 0,$$

$$\frac{1}{\lambda} (u^{n+1} - u^{n+1/2}) + Wu^{n+1} = 0,$$

which shows that (9) results from the combination of a forward step on V and backward step on W. In this section, we show that these algorithms can be used to solve variational inequalities

We shall assume that $T:H \rightarrow 2^{H}$ is a maximal monotone operator. We denote by D(T) the domain of T and by

$$J_T^{\lambda} = (I + \lambda T)^{-1}$$

the resolvent of T. Let $\varphi: H \rightarrow \mathbf{RU} \{+\infty\}$ be a proper convex lower semi-continuous (l.s.c) function and let f be defined on H. We consider the following variational inequality:

Find $u \in D(\phi)$ such that there exists $w \in Tu$ satisfying

 $(w-f,v-u)+\phi(v)-\phi(u) \ge 0 \quad \forall v \in D(\phi).$ (10) It is easy to notice that the above problem is equivalent with the problem:

Find $u \in H$ such that

$$Tu + \partial \varphi(u) \ni f \tag{11}$$

where $\partial \phi$ is the subdifferential of ϕ .

We shall assume that the problem (10) has at least one solution. Hence there exists $u \in H$, $t \in Tu$, $s \in \partial \varphi(u)$ such that t+s=f. We do not affect the generalization of the problem if we assume in the sequel that f=0.

Since T and $\partial \phi$ are maximal monotone operators, we can apply the Peaceman-Rachford algorithm to solve the problem:

Find $u \in H$ such that

(12)

In the case considered here, where T and $\partial \phi$ are multi-valued, we need to make precise the definition of the algorithms (5) and (8). For both, $u^0 \in D(T)$ is given, and we choose $t^0 \in Tu^0$ and set $v^0=u^0+\lambda t^0$ in such a way that $u^0=J_T^{\lambda}(v^0)$. We then define by induction the sequence $\{v^n\}$ in the following way:

Algorithm

$$\mathbf{v}^{n+1} = (2\mathbf{J}_{\partial \varphi}^{\lambda} - \mathbf{I})(2\mathbf{J}_{T}^{\lambda} - \mathbf{I})\mathbf{v}^{n}$$
(13)

Convergence of the Algorithm. We obtain the algorithm above after a simple computation. Since t+s=0 and v=u+ λ t in such way that u=J^{λ}_T(v), we have

"HENRY COANDA" AIR FORCE ACADEMY ROMANIA

GERMANY

" GENERAL M.R. STEFANIK" ARMED FORCES ACADEMY SLOVAK REPUBLIC

INTERNATIONAL CONFERENCE of SCIENTIFIC PAPER AFASES 2011 Brasov, 26-28 May 2011

s=-t,
$$u+\lambda s=u-\lambda t=2u-u-\lambda t=2J_T^{\lambda}(v)-v$$
.
From this relation, we obtain

$$u=J_{\partial \varphi}^{\lambda}(2J_{T}^{\lambda}-I)v,$$

$$2u=2J_{\partial \varphi}^{\lambda}(2J_{T}^{\lambda}-I)v,$$

$$v+2J_{T}^{\lambda}(v)-v=2J_{\partial \varphi}^{\lambda}(2J_{T}^{\lambda}-I)v,$$

$$v=(2J_{\partial \varphi}^{\lambda}-I)(2J_{T}^{\lambda}-I)v,$$

relation which suggests our algorithm, and the following notations

 $v=u+\lambda t$, $w=u+\lambda s$,

$$w^{n}=2u^{n}-v^{n}, t^{n}=\frac{1}{\lambda}(v^{n}-u^{n}), s^{n}=\frac{1}{2\lambda}(w^{n}-v^{n+1}).$$

We prove the following result.

Proposition 2.1. Under the assumption: there exists $u \in H$, $t \in Tu$, $s \in \partial \varphi(u)$ such that t+s=0, the sequences $\{u^n\}$, $\{v^n\}$, $\{w^n\}$, $\{s^n\}$, $\{t^n\}$, remain bounded. Moreover

$$\lim_{n \to \infty} (t^{n} - t, u^{n} - u) = 0$$
(14)

$$\lim_{n \to \infty} (s^{n} - s, \frac{v^{n+1} + w^{n}}{2} - u) = 0.$$
 (15)

Proof. From the definition of t^n , we have $v^n = u^n + \lambda t^n$. As $u^n = J_T^{\lambda} v^n$, we have $v^n \in u^n + \lambda T u^n$, hence $t^n \in T u^n$. From the monotonicity of T, we get:

$$0 \le (t^{n} - t, u^{n} - u) = \frac{1}{4\lambda} (||v^{n} - v||^{2} - ||w^{n} - w||^{2}), (16)$$

using the relations

$$u^{n} = \frac{1}{2} (v^{n} + w^{n}), u = \frac{1}{2} (v + w),$$

$$t^{n} = \frac{1}{2\lambda} (v^{n} - w^{n}), t = \frac{1}{2\lambda} (v - w).$$

On the other hand, from (13), we have

$$\mathbf{v}^{n+1} = (2\mathbf{J}_{\partial \varphi}^{\lambda} - \mathbf{I})\mathbf{w}^{n} \Longrightarrow \frac{1}{2} (\mathbf{v}^{n+1} + \mathbf{w}^{n}) = \mathbf{J}_{\partial \varphi}^{\lambda} (\mathbf{w}^{n}).$$

Hence

$$w^{n} \in \frac{v^{n+1} + w^{n}}{2} + \lambda \partial \varphi(\frac{v^{n+1} + w^{n}}{2}),$$

$$s^n = \frac{w^n - v^{n+1}}{2\lambda} \in \partial \phi(\frac{v^{n+1} + w^n}{2}).$$

From the monotonicity of $\partial \phi$ we deduce

$$0 \le (s^{n} - s, \frac{v^{n+1} + w^{n}}{2} - u) =$$

$$(\frac{w^{n} - v^{n+1}}{2\lambda} - \frac{w - v}{2\lambda}, \frac{w^{n} + v^{n+1}}{2} - \frac{w + v}{2}) =$$

$$\frac{1}{4\lambda} (||w^{n} - w||^{2} - ||v^{n+1} - v||^{2}).$$
(17)

From (16) and (17) we obtain the inequalities $||v^{n+1}-v||^2 \le ||w^n-w||^2 \le ||v^n-v||^2$,

which show that the sequences $\{v^n\}, \{w^n\}$ are bounded. Implicitly, $\{u^n\}$ is bounded. Finally, as

$$||v^{n} - v||^{2} - ||v^{n+1} - v||^{2} \rightarrow 0 \text{ as } n \rightarrow \infty,$$

16), (17) imply (14) and (15).

Definition 2.2. We say that A:H \rightarrow H satisfies *condition (C)* if for all x^n , $x \in D(A)$ such that A x^n is bounded, $x^n \rightarrow \overline{x}$ (weak convergence), and

 $\underbrace{(Ax^n - Ax, x^n - x) \rightarrow 0 \text{ as } n \rightarrow +\infty, \text{ imply}}_{x = \overline{x}}$

Theorem 2.3. If T is single-valued and satisfies condition (C), then the sequence $\{u^n\}$ obtained from Algorithm converges weakly to u, the solution of (12), which is unique.

Proof. We first prove uniqueness. Let u_1 , u_2 , be two solutions of (12). We have, using the monotonicity of $\partial \varphi$,

 $0 \le (Tu_1 - Tu_2, u_1 - u_2) =$

 $-(\partial \varphi(u_1) - \partial \varphi(u_2), u_1 - u_2) \leq 0,$

hence $(Tu_1-Tu_2, u_1-u_2)=0$ which, together with condition (C) implies $u_1=u_2$.

Let $\{u^{n_i}\}\$ be a subsequence of the bounded sequence $\{u^n\}\$ such that $u^{n_i} \rightarrow \bar{u}$. From (14) and condition (C), one gets $u=\bar{u}$, and from the uniqueness, the whole sequence $\{u^n\}\$ converges weakly to u.

Remark 2.4. We can prove that, if a subsequence $\{v^{n_i}\}$ of $\{v^n\}$ is bounded, then

the problem (12) has one solution u. Indeed, let A= $(2J_{\partial \varphi}^{\lambda} - I)(2J_{T}^{\lambda} - I)$, we have $v^{n+1} = Av^{n}$. As $2J_{\partial \varphi}^{\lambda} - I$ and $2J_{T}^{\lambda} - I$ are nonexpansive, A itself is nonexpansive. Because the subsequence $\{v^{n_{i}}\}$ is bounded, we obtain that A has a fixed point v, with Av=v. Let $u=J_{T}^{\lambda}v$ we have $u \in D(T)$ and $v=(2J_{\partial \varphi}^{\lambda} - I)(2u-v), u=J_{\partial \varphi}^{\lambda}(2u-v)$. Hence $u \in D(\partial \phi)$. Let $t \in Tu$ satisfy $v=u+\lambda t$. We have $u=J_{\partial \phi}^{\lambda}(u-\lambda t) \Rightarrow (u-\lambda t) \in u+\lambda \partial \phi(u)$ that is $-t \in \partial \phi(u)$, hence u is a solution of the problem (12).

3. REFERENCES

- J.B.Baillon, Quelques propriétés de convergence asymptotique pour les contractions impaires, *C.R.Acad. Sci. Paris*, Série A 283(1976), p. 587-590.
- H.Brézis, Opérateurs Maximaux Monotones et Semigroupes de Contraction dans les Espaces de Hilbert, Lectures Notes no. 5, North-Holland, Amsterdam, 1973.
- F.E. Browder and W.V. Petryshyn, Construction of fixed points of nonlinear mappings in Hilbert spaces, *J. Math. Anal. Appl.* 20 (1967), p. 197-228.
- R.E. Bruck, An iterative solution of a variational inequality for certain monotone operators in Hilbert spaces, *Bull. Amer. Math. Soc.* 81 (1975), p. 890-892.
- 5. C. Chiriac, O metoda iterativa pentru inegalitati variationale, Analele Facultatii

de Inginerie din Hunedoara, Tomul 3, fasc. 5 (2001), p. 1-4.

- 6. J. Douglas and H.H. Rachford, On the numerical solution of the heat conduction problem in 2 and 3 space variables, *Trans. Amer. Math. Soc.*82 (1956), p. 421-439.
- A.A. Goldstein, Convex programming in Hilbert spaces, *Bull. Amer. Math. Soc.* 70 (1964), p. 709-710.
- P.-L. Lions, Une méthode itérative de résolution d'une inéquation variationelle, *Israel Journal of Mathematics* 31 (1978), p. 204-208.
- 9. P.-L. Lions and B. Mercier, Splitting algorithms for the sum of two nonlinear operators, *SIAM J. Numer. Anal.* 16 (1979), p. 964-979.
- G.I. Marchuk, Methods of Numerical Mathematics, Springer-Verlag, New York, 1975.
- D.H. Peaceman and H.H. Rachford, The numerical solution of parabolic elliptic differential equations, *J. Soc. Indust. Appl. Math.* 3 (1995), p. 28-41.
- 12. R.T. Rockafellar, Monotone operators and the proximal point algorithm, *SIAM J. Control Optim.* 14 (1976), p. 877-898.
- P. Tseng, Applications of a splitting algorithm to decomposition in convex programming and variational inequalities, *SIAM J. Control and Optimization* 29, 1(1991), p. 119-138.